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Abstract. We consider time-continuous spatially discrete approximations by the Galerkin 
finite element method of initial-boundary value problems for semilinear parabolic equations 
with nonsmooth or incompatible initial data. We find that the numerical solution enjoys a 
gain in accuracy at positive time of essentially two orders relative to the initial regularity, as a 
result of the smoothing property of the parabolic evolution operator. For higher-order 
elements the restriction to two orders is in contrast to known optimal order results in the 
linear case. 

1. Introduction. We consider continuous in time spatially discrete approximate 
solutions by Galerkin finite element methods of the semilinear initial-boundary 
value problem 

ut Au = f (u) in Q x I, I = (O. t*], 
(1.1) u =O onaQ x I, 

u(O)=v in U. 

Here Q is a bounded domain in Rd, d = 1, 2 or 3, with a sufficiently smooth 
boundary aQ, and f is a smooth function on R for which we assume provisionally 
that 

(1.2) f(y), f '(y) | B for y E R. 

Such an assumption is normally reasonable only if the solution of (1.1) is known a 
priori to be bounded; see the discussion at the beginning of Section 3. 

For spatial discretization of (1.1) let Sh C Ho = Ho((Q) be a family of finite- 
dimensional spaces parametrized by a small positive parameter h, and let the 
semidiscrete solution uh: I -* Sh be defined by 

(1.3) (uht,tX) +(Vuhvx) = (f(uh),X) for X E Sh, 
Uh (O) = Vh E Sh, 

where (, ) denotes the standard inner product in L2= L2(Q)= 
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In order to discuss the error in (1.3), we assume that Sh is such that the 
corresponding linear elliptic problem admits an O(h') error estimate in L2. More 
precisely, we assume that the elliptic projection P1, i.e., the orthogonal projection 
onto Sh with respect to the Dirichlet inner product (Vv, Vw), satisfies for some 
r > 2 and some constant M, 

(1.4) _ Pv |MhrII V II Hr for v E Hl n Hr. 
where is the usual norm in L2 and Hr = H r(Q) is the standard Sobolev space 
of order r. It is well known that if u is sufficiently smooth on the closed interval I, 
and if the discrete initial data Vh are suitably chosen, then (cf. Wheeler [26]) 

(1.5) Uh(t) - U(t) || < C(u, B, M)hr for t E I. 
To guarantee that u is smooth enough for this result, both smoothness of v and 

compatibility conditions between v and the differential equation at au for t = 0 are 
necessary. For instance, in the linear homogeneous case (f 0 in (1.1)) it was shown 
in Bramble, Schatz, Thomee and Wahlbin [4] that, with wh(t) and w(t) denoting the 
solutions in this case, we have 

(1.6) IIWh(t)-w(t) | ChrIIVIIHr for v E D(( A)r/2), t E 

which thus requires &jvlag = 0 for j < r/2. (An analogous result for the semilinear 
problem is contained in our Theorem 3.1 below.) The conditions on v thus required 
for optimal order error estimates in Lc,,(I, L2) are not always satisfied in practice 
and it is therefore of interest to analyze the error for nonsmooth or incompatible 
data. Note that the solution of (1.1) will always be smooth for positive time. For the 
linear homogeneous equation this may be expressed by saying that the solution 
operator E(t) of the initial value problem is an analytic semigroup and that 

(1.7) IIE(t) v If <Ct-(f-a)/2I1v I Ift where Iv 11,i = 1( -)a/2VI. 

For the linear homogeneous equation the nonsmooth data situation has been 
investigated in Blair [2], Helfrich [9], Fujita and Mizutani [6], Bramble, Schatz, 
Thomee and Wahlbin [4] and later papers (cf. Thomee [23]). In this case it may be 
shown by use of the smoothing property (1.7) that if Eh (t) is the solution operator 
for the initial value problem for the linear homogeneous equation, and if vh is 
chosen as Pov, the L2-projection of v onto Sh, then 

IIEh(t)Pov - E(t)vII = IIWh(t) - w(t) 

< C(M)ha+Ut -/2I vI1ft forO < a < a + a < r. 
In particular, optimal order convergence is attained for t positive, even if v is only 
in L2. A similar result showing O(hr) convergence for positive time without initial 
regularity holds also for the linear inhomogeneous problem; see (1.14) below. 

The purpose of this paper is to investigate to what extent results such as the above 
carry over to the semilinear situation. We begin by stating and proving the following 
result. 

THEOREM 1.1. Assume that (1.2) holds and let u be a solution of (1.1) with vii < K. 
Assume further that (1.4) (and thus (1.8)) is satisfied and let Uh be the solution of (1.3) 
with Vh = Pov. Then there exists a constant C = C(B, K, M, t*) such that 

(1.9) I|uh(t) - u(t)|| < Ch2(t-1 + Ilog(h2/t) |) fort E I. 
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Proof. Simple energy arguments show that u(t) and uh(t) are bounded in L2 so 
that (1.9) trivially holds for t < h2. With our above notation we have, by Duhamel's 
principle, for the solutions of (1.1) and (1.3) that 

u(t) = E(t)v + f E(t - s)f(u(s)) ds 

and 

Uh(t)= Eh(t)Vh + f Eh(t - S)POf(uh(s)) ds. 

Hence, with Fh(t) = Eh(t)PO- E(t) the error operator for the linear homogeneous 
equation, the error e = uh - u of the semilinear problem satisfies 

e(t) Fh(t)v + f Eh(t - s)PO[f(uh(S)) -f(u(s))] ds 

(1.10) 0 

+ f Fh(t - s)f (u(s)) ds. 

Using the cases a = 2 and 0, a = 0 of (1.8), we thus find for t > h2 that 

11e(t) 11j Ch2t-1 + C (h+ t) le (s) 11 ds 

(1-.11 

+ 

(t fh / |F^h 

t - s)f (u(s)) 
1l ds 

(-l + th2 + C 
t 

c fth2 Ch2V' Ch 2h2 + C Ile(s) 11 ds + Ch2 t-s + 2 

s Ch 2V -1 + Ch2log( t/h2) + C f e (s) 11 ds. 

Letting p9(t) =fJ'2 I e(s) I ds, we conclude that 

(t) - CcP(t) < Ch2t-1 + Ch2log(t/h2) for h2 < t s< t 

mp(h2) = 0, 

whence 

Cp(t) < cft eC(t-s)(h2s1 + h2 log(s/h2)) ds 

< Ch2 log(t/h 2). 

Inserting this into (1.11) completes the proof of the theorem. 
The above result shows that for r = 2 the error in the semilinear case is essentially 

of the same order as for the linear homogeneous equation. For r > 2, however, the 
result of Theorem 1.1 is weaker than the case a = 0 of (1.8). The reason why the 
above argument fails to yield order of convergence higher than second is the lack of 
integrability of the right-hand side of (1.8) for a > 2. In Section 6 we shall see that, 
in fact, Theorem 1.1 is essentially sharp in the sense that an estimate of the form 

(1.12) I|uh(t0) - u(tO) || < C(B, M, to)h0, lu(x, t) | < B, 

cannot hold for any a > 2 and to > 0, regardless of the value of r. Note that the 
requirement that u is bounded is more stringent than boundedness in L2 of initial 
data. We next give a preliminary example, based on Fourier series, to indicate this 
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and begin by remarking that our discussion of (1.1) applies equally well to systems 
of equations of this form. 

Consider the following system with periodic boundary conditions and u = (u1, u2), 

Ul, = u1,XX + f(u2), f(y) = 4y2 for IIy< 1, 
(1.13) 2,'= U2,xx on [-St,'7r] x(O, o), 

U1( , O)=, u2(., O) = V2- 

Taking v2(x) = cos(nx), we have 

u2(x, t) = exp(-n 2t) cos(nx), 

u1(x, t) = 1 - 
exp(2-2n 2t) [1 + exp(-2n2t) cos(2nx)], 

n 

so that by nonlinear interaction ("aliasing") an initial high Fourier mode has 
resulted in a low, indeed constant, mode. 

To approximate this problem, let h = 1/n with n a positive integer, and set 
Sh = span{1, cosx, sinx,...,cos(n - 1)x, sin(n - 1)x}. Since Pov 0, the Galer- 
kin solution uh vanishes identically and hence, at any positive time to, 

fIUh(to) -u(to)II=Iu (to)1 22 = _v5h2 forlargen. 

Since u is bounded independently of n, this contradicts (1.12) for a > 2. 
We next elucidate to what extent the restriction a < 2 in (1.12) is a truly nonlinear 

phenomenon. We thank Professor Jim Douglas, Jr. for interesting discussions which 
helped clarify this point. In the linear case the guiding principle is that the solution 
has to be sufficiently smooth near the time of interest in order to guarantee optimal 
order error there, whereas what roughness and consequent bad approximation went 
on before that time is dampened out and does not particularly matter. To be precise, 
we quote the following result from Thomee [221, [23, Chapter 3, Theorem 51 for the 
linear problem u, = Au + g(x, t), u = 0 on aa, u(O) = v: For any to > 0, 8 > 0, 

IUh (to) -U (to)II 

(1.14) 
< hrC(to, 8) v1V| + |0 11g(t) || dt + | [|0 )IH lt I t 

As a linear analogue of the counterexample (1.13) above one may naturally take 
g(x, t) = 0 (since f(O) = 0) or g(x, t) = 4 exp( - 2t/h2) cos2(x/h). In both cases, 
by (1.14), the finite element approximation will be of optimal order for positive time. 
Thus the limit to second-order accuracy in (1.12) appears to be a genuinely nonlinear 
effect. 

We remark that a practical limitation in our result is that the L2-projection and 
the term (f(uh), X) in (1.3) are assumed to be evaluated exactly; cf. Wahlbin [25]. 

Results similar to the- above, concerning the discretization in time of equations 
such as (1.1) and (1.3), will be presented in Crouzeix and Thomee [5]. 
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Investigations related to the present work can be found in Hale, Lin and Raugel 
[7] where a case of our Theorem 4.1 is derived, and in Heywood and Rannacher [10] 
where the Navier-Stokes equations with incompatible initial data are considered. 
The latter authors obtain estimates for positive time of order ht, m = 3,4,5, and 
remark that it has to be left as an open question whether the limitation of the 
smoothing results to approximation order m < 5 is inherent to the problem or to the 
method of proof. The sharpness of our Theorem 1.1 is certainly suggestive in this 
regard. 

We now give an outline of the rest of the paper. In Section 2 we study the 
existence and regularity of the solution of (1.1) with particular emphasis on the 
dependence of the regularity of the solution at positive time upon the smoothness 
and compatibility of the initial data. The main result, Theorem 2.2, is an analogue of 
the estimate (1.7) for the linear homogeneous problem and is proved in the 
Appendix. 

In Section 3 we consider the error in the semidiscrete solution in the case that the 
initial data have some amount of smoothness and compatibility, but not enough for 
(1.5) to hold. Generalizing Theorem 1.1, we show that the convergence rate in L2 at 
positive time is almost two powers of h higher than the order of regularity of the 
initial data. 

In Section 4 we prove that the gain in the L2 convergence rate of almost 0(h2) 
relative to the regularity of the initial data carries over to the gradient of the error up 
to the optimal order. In Section 5 the analogous results are derived for the 
maximum-norm of the error and its gradient. 

In Section 6, finally, we present a scalar counterexample in a standard family of 
piecewise polynomial approximating spaces to show that Theorem 1.1 cannot be 
substantially improved. 

2. Existence and Regularity of the Exact Solution. As in the introduction, let 
Q C Rd, d < 3, be a bounded domain with smooth boundary and I = (0, t*I a finite 
time interval; consider the semilinear parabolic problem 

u,- Au =f(u) in Q x I, 

(2.1) u=0 on8X I, 

U(-,O) = v inU. 
We assume now that f is a smooth, possibly unbounded function and that v is 
bounded on Q. Our purpose here is to present a regularity estimate for the solution 
of (2.1) that we shall need in the sequel. The outline of this section follows Chapter 1 
of Larsson [12], where more details can be found. 

Our argument will be based on well-known properties of the corresponding 
homogeneous linear problem 

w, -Aw = in 9x (0, oo), 
(2.2) w = O on ag x (0, oo), 

w(-,O) = v in U. 

Denoting as before the solution operator of this problem by E(t), we recall the 
smoothing property 

(2.3) IIEGl)vIoua < C-(a)/2IIv.lf a, 0 _ a _ fi, II Vie =Ilk ( _A) /2v, 
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where the norms and the corresponding Hilbert spaces are defined by means of the 
fractional powers of -A, considered as an unbounded operator on L2. It is well 
known that, except for small a, the spaces Ha' involve boundary conditions. We 
have, for example, Hf' = = {v E H': v = 0 on K2} and H2 = H2 n Ho. 

We shall now consider the existence of a solution of the nonlinear problem (2.1). 
Our aim is to allow nonsmooth initial values, i.e., we do not want to make restrictive 
assumptions on regularity or boundary compatibility. (For existence of a solution in 
the case of smooth data, cf. Amann [1].) It is clear that any classical solution of (2.1) 
also satisfies the integral equation 

(2.4) u(t) = E(t)v+ ? E(t-s)f(u(s)) ds, t E I. 

With the above purpose in mind, we shall assume that v E L,, and we shall solve 
(2.4) in L,(I, L.). It does not seem possible to solve (2.4) with arbitrary initial 
values in L2 without restricting the nonlinearity f. It should also be remarked that 
our solution concept could not be replaced by C(I, L.), since the semigroup 
{ E(t)}) > 0 is not strongly continuous on L., as is easily seen by taking for example 
a discontinuous initial function. However, { E(t)}) >0 is bounded on L.(Q), 

(2.5) IIE(t)vII < 1 |VIIL., t > 0. 

This follows from the maximum principle for weak solutions of linear parabolic 
equations; see, e.g., Ladyzenskaja, Solonnikov and Ural'ceva [11, Theorem 111.7.2]. 

Using (2.5) and standard contraction mapping arguments (cf., e.g., Smoller [20]), 
we obtain for each v E Lo a unique local solution u of (2.4). Moreover, if we have 
an a priori bound in the LO.-norm on the whole interval I, we obtain a global 
solution (cf. again [20]). We state this result as the first part of the following 
theorem. 

THEOREM 2.1. Let v E Lo and assume that a priori IHu(t)IIL < B, t E I, for any 
possible solution u of (2.4). Then (2.4) has a unique solution u E L,(I, Loo). More- 
over, u E C(I, L2) n C?0(2 XI) and satisfies the differential equation and boundary 
condition in (2.1). 

The second part of the theorem states that u is a classical solution of (2.1) for 
positive time. This can be proved by a standard bootstrapping technique using the 
Schauder estimates for linear parabolic equations (see, e.g., [11, Theorem IV.5.2]) 
and the smoothness of f and K2. The initial value, however, may in general be 
attained only in the L2 sense. With u a priori bounded, we may assume that f(u) 
and any number of its derivatives are bounded on R. We shall use B to denote also 
such bounds below. 

Our main object in this section is to study the regularity of the solution u as 
measured by the fractional-order Sobolev spaces Ha = Ha(Q), defined by interpola- 
tion between L2 and Hm, m integer. Our aim is to obtain an estimate similar to the 
smoothing property (2.3) for the homogeneous linear problem (2.2). This is achieved 
by first estimating the time derivatives u(m) = Dtmu, where Dt = a/at, in the Ha' 
norms for 0 < a < 2 and then estimating spatial derivatives by using the equation 
satisfied by u(?) and a regularity estimate for linear elliptic problems. Thus, we shall 
need to differentiate Eq. (2.1) with respect to time, which is allowed in view of 
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Theorem 2.1. Hence, for m > 0 we have 

(2.6) Um)m Au(m) Dmf(u) t E, I 

so that, for 0 < X < t < t 

(2.7) u(m)(t) = E(t -. T)U(m)(T) + fE(t s)DSmf (u(s)) ds, 

where u(m)(T) may have no limit as X -- 0. For m > 1 we have here 
m 

(2.8) Dtmf(u) = Ycif)(u) u "(l) . . .u(lj) 
j=1 I 

where the inner sum is to be taken over the set of all multi-indices 1 = (11,.. ., j) 
with 1, > 1, 1 < i ? j, and Y1j = m, and where the cl are combinatorial coefficients. 

In order for u to have a certain regularity on I it is necessary not only that the 
initial value v be regular enough, but also that v be compatible with the nonlinearity 
f. In order to describe this, for given v E L:,< we define v; recursively by the 
following procedure: First put v0 = v. Suppose, then, that v; has been defined for 
some j >. If vj e A2, then stop. Otherwise, i.e., if VU E 42 for s < j, put 

Vj+- 1+ Ec.f (v) VI, V/. 
i=l l 

Since 

jjf(i)(V)V1 VI, Vij I If 
(')(v) IILiIVIIIL /jI1,I 

< C|| VI,1 ft2 ... 11 V1 11ft2, 

by Sobolev's inequality (d < 3), this defines v>+ 1 as an element of L2. 
Let' a > 0 be a real number and let k be the integer part of a/2, so that 

0 < a-2k < 2. We define the set, J by 

a= {vELo: vL j EH2if 0 <j < k and vk H-2k }. 

This definition is motivated by the fact that if u E Ck(I, L2) then u(j)(0) = v1 for 
0 < j k and v; Ei 2 for 0 < j < k. We shall think of Jg as the set of all 
bounded initial values that are regular and compatible of order a. We note that 
v Ei F. implies that vj = on as for 0 < j < k. 

For v E F. we define 

Fa(v) = max{IIVIL, 11VjIIt2,0 <j < k, IIVkII j 2k}. 

This makes F. a nonlinear functional that measures initial regularity and compatibil- 
ity in a convenient way. Note that for a < 2, F,(v) = max{Iv[IIL Lu IvII h.}. We now 
state the main result in this section. 

THEOREM 2.2. Let u E L.(I, L.) be a solution of (2.4) with IIu(t)IIL < B, t E I. 
Let 0 < -a < 5 and 2 j . 4 and assume that v EC jf with Fa(v) sK. Then there 
is a constant C = C(B K, t*) such that 

(2.9) |IU(j)(t) IIHP-2i K Ct-(- a)/2 t E I. 
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The case f3 - a < 4 of Theorem 2.2 was proved in Larsson [12]. Because of the 
nonlinear character of the problem it becomes more difficult to prove the regularity 
estimate (2.9) as the difference between /3 and a increases. Since /3 - a < 5 is 
sufficient for our applications, we shall content ourselves with the present version of 
the theorem, although it might be possible to squeeze a little more out of our method 
of proof. The proof of Theorem 2.2 is elementary but rather technical and is 
relegated to the Appendix. 

3. A Basic Error Estimate. In this section we shall prove our basic error estimate 
for the semidiscrete Galerkin solution of (2.1), i.e., the solution Uh: I = [0, t*1] Sh 
of 

(3.1) (uht, X) +(Vuhvx) = (f(uh), X) for XE Sh, t El, 

Uh(0) = Vh = POV. 

With the situation of Theorem 2.1 in mind, i.e., the case that the solution sought is a 
priori uniformly bounded on I, we shall assume that f, f ' and sometimes also f" 
are bounded on R. If this is not the case originally, f(u) may be modified for 

I uI > B so that this becomes true, where B is an upper bound for the exact solution 
which we shall also use to denote the bounds on f. Such a modification will change 
the Galerkin formulation (3.1), and thereby also possibly the semidiscrete solution, 
as the latter is in general not known to be bounded, uniformly in h, but the exact 
solution remains the same. Some situations where this modification is known not to 
be necessary are given in [24]. 

We assume in this section that Sh C Ho((Q) and that, with Pl: Ho2(Q) -- Sh the 
elliptic projection defined by (V(P1v - v), VX) = 0 for X E Sh, there is an r > 2 
such that 

(3.2) 11 P1v-v 11 < Mhs|| V |IHS for I < s < r, v E Ho(Q) n Hs(Q). 

For straight-edged simplicial partitions of a convex smooth domain, and with h the 
maximal diameter of an element, one has r = 2 regardless of the polynomial degree 
used. For isoparametric elements of degree p - 1, typically r = p, but the assump- 
tion that Sh C Hd(Q), although in principle possible to satisfy, is seldom fulfilled in 
practice; cf. Remark 3.1 below. 

THEOREM 3.1. Let u be the solution of (2.1) with F,(v) < K for some a > 0. 
Assume that (3.2) holds and let further 0 < a < 2 and 1 < a + a < r. Then there 
exists a constant C = C(B, K, M, t*, a, a) such that, if uh is the solution of (3.1), we 
have 

I1Uh(t) - u(t) | < Chaatv/2 for t E I. 

Proof. We begin by noting that the argument of the proof of Theorem 1.1, using a 
superposition of the estimate (1.8) for the linear homogeneous problem, may not be 
applied in general. In fact, in order to deal with the term Fh(t - s)f(u(s)) in (1.10), 
this would require f(u(s)) to be in some Ht' space and, in particular, if a > 1/2, 
would demand f (0) = 0, which is not always true. We shall therefore give a direct 
proof which does not depend on (1.8). 

Let T= (-_<1: L2 -- H2 and Th: L2 Sh be the approximation defined by 

(3.3) (vThf,vX) = (fx) for X E Sh 
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As is well known and easy to check, the operator Th is bounded, symmetric, positive 
semidefinite on L2 and positive definite on Sh. The elliptic projection satisfies 
Pv = Th( -A)v. Application of T to (2.1) yields 

Tut + u = Tf (u) for t > O 

and the semidiscrete problem (3.1) may similarly be written 

(3.4) ,Uh, + Uh =Thf (Uh) for t>O, 

Uh (O) = Vh. 

Let e = Uh - u be the error. We have 

Thet + e = ThUht + Uh - Thut - u 
= Thf (Uh) -Tf (u) + (T- Th)Ut 

Th(f(uh) -f(u)) +(T- Th)(f(u) - ui) 
or 

(3.5) Thet + e = Th(we) + p, 

where 

=| f '(yu + (1 -y) uh) dy 

which is bounded by our assumption that f ' is bounded and where 

P = -(Th - T)Au = (P1 - I)u. 
Multiplication of (3.5) by et yields 

(The, et) 2 dt = (T(we), et) +(p et) 

= (Th(tie), et) + d(p, e) - (p,, e). 

Since Th is positive semidefinite, we have the Cauchy inequality 

(3.6) |(ThV, W) I < (ThV, V)112(Thw W)1/2 

and hence, by the geometric-arithmetic mean inequality, 

(Thet ,et). + i Tell2 2 (Thet, et) + 2 (Th(we), we) + dt (p, e) -(pt.e) 

or, employing the boundedness of Th and w, 
d 2 12 d 
IlIe 11 <CI|e|I + 2dj(p,e) - 2(pt,e). 

Multiplication by t2 now gives, using also that t < t* and again the geometric- 
arithmetic mean inequality, 

ddt(t2lle 112) e2t11e + Ct2IlleI + 2dt(t2(p,e)) - 4t(p,e) - 2t2(pt,e) 

< 2d-t(t2(p,e)) + C(tIlp11 + 3 + tII eII), 

whence, by integration and a trivial kickback argument, 

(3.7) t211e112 I Ct2llpll2 + cf' (sllpli2 + s3llptll2) ds + Cf slleI ds. 
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In order to estimate the last integral, we return to the error equation (3.5), which we 
now multiply by e to obtain 

2 dt (The, e) + 11e|| = (Th(we), e) + (p, e) 

or, after multiplication by 2t and manipulation similar to that above, 

d (t(The, e)) + 2tjje1|2 < 2t(Th(we), e) + 2t(p, e) +(The, e). 

Here, by (3.6), for E suitable, since Th and w are bounded, 

(Tf(we),e) < e(Th(we),we) + 
I 

(Thee) 6 Iliell + C(The,e), 

so that 

d (t(Thee)) + 2ti1e112 < tie 112 + C(til pI2 + (The, e)) 

and hence, by integration, 

(3.8) f'si|e||lds e Cf'sI|PI ds + Cf (The,e)ds. 

We shall now estimate the last integral. We set E(t) = Jo'e(s) ds and integrate (3.5) 
to obtain 

(3.9) Th(e(t) - e(O)) + E(t) = Th^ weds + | ds. 

We note that The(O) = 0, since 

(The(O),p)= (Pov-v,Th)= 0 forp E L2( ). 

Hence, multiplying (3.9) by E'(t) = e(t), we obtain 

(The Ie) + 2 dt IIEl = ( eds, e +( p ds,e) 

< 21 (The, e) + T weds, f weds) + f' ||p|dsljell, 

or, by integration, since E(O) = 0, 

ft (The,e)ds Cf (J Ile (T) | dT) ds + 2 liell ( IIP (T) 1 dT )ds. 

Altogether, using (3.7) and (3.8), we find 

t2iell < C t211p112 +f (sdjpsj + 

+ | ( |e(T) ||dT) ds + | |e||( |P(T) ||dT) ds) 

Now by our assumptions on u we have by (3.2) and Theorem 2.2 

jjP(t) 11 = II(PI - I)u(t) 11 < ChG+alIu(t) < Cha+at-aI2 

and similarly 
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so that, since a < 2, 

t2I|le |2| < C h2(a+a)t2U- + f ( jjef| dT )ds + ha + a| s 1 - a/2 Ile 11 ds. 

Setting p(t) - tI/2lje(t)Jj, this shows 

( t )2 C(h'2(a+) + t-(2U)f (J r*a2p(r) dr)ds 

+ h a+at_(2_f) t 
pS" p(s ) ds}. 

With +(t) = max <,<qT (s), and choosing to = to(t) such that p(to)- +(t), we 
have 

(it) < (to) C h2(af) + t2- c)fto s2-47,(S)2d + ha?f1(t)} 

or 

(t)2 C h2(a+a) + j AP(s) ad}. 

Gronwall's lemma now shows 

t a/2 Ile(t) 11 < + (t) Ch"w, 

which completes the proof. 
Remark 3.1. As is well known, for r > 2 there are difficulties connected with the 

construction of finite element spaces Sh for which the functions satisfy homogeneous 
Dirichlet boundary conditions, that is, such that Sh c Ho(u). To deal with this 
difficulty, a variety of different methods have been proposed (cf. Nitsche [14] and 
Bramble [3]) for which the approximate solution operator Th is not defined by (3.3) 
but in some other way, and with the properties that Th: L2 Sh C L2 is selfadjoint, 
positive semidefinite, positive definite on Sh and such that 

11 Th!f- Tf 11 Chs11 u 11s2 for 2 < s < r. 

Defining now the semidiscrete problem by (3.4), the above proof of Theorem 3.1 
extends immediately to this case with the only change that in the formulation of the 
theorem a + a is required to lie in the interval [2, r]; cf. [4] for the linear parabolic 
case. 

4. An Estimate for the Gradient of the Error. In this and the following section we 
shall derive some further error estimates for the semidiscrete problem (3.1) in which 
the regularity and compatibility assumptions are the same as those of our basic error 
estimate of Theorem 3.1. The first of these states that the convergence order of 
Theorem 3.1, i.e., O(ha+U) for v E iF, 0 < a < 2 and t > 0, is maintained for the 
gradient of the error, provided a + a is bounded by the optimal convergence order 
for gradients. 

In addition to (3.2) we assume in this section that the functions in Sh vanish 
outside a subdomain oh C a (with equality possible) and that for some r' with 
r < r' < r + 1 

(4.1) llPjv-V11H1(uh) < Mhs3l1v1 V ( ), 1 < s < r' for v E Ho(Q2) n Hs(sa). 
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(Recall that we generally omit the domain in our notation if it is the whole of Q.) 
For instance, for straight-edged triangular partitions in the plane and continuous 
piecewise polynomials of quadratic or higher degree, r' = 5/2 (Strang and Fix [21, 
p. 195]), whereas for isoparametric elements of degree p - 1 one has r' = p. Note 
that (4.1) would not hold with Qh replaced by Q in these cases. 

THEOREM 4.1. Let u be the solution of (2.1) with F,,(v) < K, a > 0. Assume that 
(4.1) holds and let 0 < a < 2, 1 < a + a < r' - 1. Then there exists a constant 
C = C(B, K, M, t*, a, a) such that for uh, the solution of (3.1), 

11V(uh(t) 
- u(t)) 111h < Cha+?t-1/2-/2 for t E I 

Proof. In addition to our earlier notation e = uh - u, p = P1u - u, and 

co =f1 f'(yu +(1 Ay)u)dy9 

set 0 = uh - Plu. Then 

(4.2) (t, X) +(v0,vX) = (f(Uh) -f (u), X) -(PIUt U-ah X) 
= (we - p, X) for X E Sh. 

Choosing X = 0S, we have 

10112 + 2 dt11V011 = - ptq Alot12 + C(Ile112 +IPt 112), 

and hence 
d jt1,012) e1 + 11 

p, 
+1 

d-t (3|S| < Ct3(| 11 +e4Pt1 + 3 t2I|V0 112, 

or, after integration, 

(4.3) t|V0|| < Cf| s3(I|eII +I|PtII2)ds + 3j s2I|vOII|ds 

To estimate the last integral, we choose instead X = 0 in (4.2) to obtain 
I d 1 0 I2 + 11vS0,12 = (cSe - Pt 9 ), 

or, using that 0 = e - p and t < t * 

Id (t260I112) + t2ll Vo 112 < CtllO 11 + Ct31(1e 12 + IA Pt 11) 

< C(tI|e 112 + tIIp 112 + t3ll P112), 

so that 

f S | cjt (shCell2 + seIpII2 + S31ptll2) ds 
Combining this with (4.3), we have 

t311v0112~ cjt (s1e12 + S,,jp112 + 1 t~lVl < C sl (|e||+s| + S311pti dS. 

We now use Theorem 3.1 to estimate e(s), and (3.2) and Theorem 2.2 to bound p 
and Pt. It results that t311,v0112 < Ch2(a+?)t2-a or, 
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Since also, by (4.1) and Theorem 2.2, 

II VP "IO < Cha+t-1/2-a/2 

this completes the proof. 
We note that the full range 1 < a + a < r is allowed in (4.4). 

5. Maximum-Norm Error Estimates. In this section we shall show that the 
estimates of Theorems 3.1 and 4.1 carry over, with the appropriate changes, to the 
case that the error is measured in the maximum norm. Again, we shall assume that 
certain error estimates hold for the elliptic problem. More precisely, we suppose that 
the elliptic projection P1 satisfies, in addition to (3.2) and (4.1), for some r > 2, 
8 >0 , 

P1V - VIILO() Q M(log -) hsl vI -w forO < s < r, 

and, again with Rh C Q, cf. (4.1), 

j1V(P1V - V) lIL. (g) < M(log h s1((v((ws for 1 < s < r. 

For notational convenience below we set 00= 02, 0 = Qh' so that the above 
assumptions combine into 

(5.1) IIPlv-v lIwji() s M(log h) hisiIvIIw2(g) for j < s < r, j = 0, 1. 

For many finite element spaces based on quasiuniform triangulations, isoparamet- 
ric or not, this estimate is an easy consequence of the almost best approximation 
result over Ah of Schatz and Wahlbin [18]; cf. also Nitsche [15]. For straight-edged 
simplicial partitions, for instance, (5.1) holds with r = 2, and for isoparametric 
elements of degree p - 1, if Oh go 0, with r = p. (For j = O and r = 2, one has 
8 = 1, cf. Haverkamp [8], while for j = 0 and r > 2, 8 = 0 [18]. For j = 1, one may 
conjecture that 8 = 0 also in the case r = 2; cf. Rannacher and Scott [17] for 
polygonal domains. 

We shall also assume that with Ah: Sh -- Sh the discrete analogue of the 
Laplacian defined by 

(5.2) (Ahvh, X)= -(VvVX) for X E Sh, 

we have 

(5.3) IIxIqf < M|(-A8)1 " 2h for X E Sh, if -1 < / < 1. 

In many situations this may be verified as follows: For /3 = 1 this is immediate (with 
M = 1) by the definition of - A h. For /3 = -1 we have, for v E H1, 

(X, V) h((-Ah) X (-Ah)h 2Pov) I (-Ah)1/2 | VP vI 

Assuming an inverse property and a suitable low-order approximation property of 
Sh, we find that PO is bounded in H1 and hence 

iX i ft- = sup (X V) < M|J(-Ah 
)/ 

11 
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For -1 < ,B < 1, (5.3) now follows by Hilbert scale interpolation on the two norms 
on Sh occurring. 

Note that with the notation (5.2) the semidiscrete solution satisfies 

(5.4) Uht - AhUh = Pof (Uh) 

The following is our result in this section. 

THEOREM 5.1. Let u be the solution of (2.1) with Fa(V) < K, a > 0, and assume 
that (3.2), (4.1), (5.1) and (5.3) hold. Let 0 < a < 2, a + a +j < r and e > 0. Then 
there is a constant C = C(B, K, M, t*, a, a, E) such that for the solution Uh of (3.1), 

Uh(t) 
- 

u(t) <W(a) C C(log h-) ha?UvU/2d/4j/2e forj = 0 1, 

where v = 8 if a + a + j = r and 8 > 0, and v = 0 otherwise. 

We shall need the following lemma for the semigroup Eh(t) = exp(tAh) on Sh, the 
solution operator for the semidiscrete problem (3.1) (or (5.4)) with f 0. 

LEMMA 5.2. Given E > 0, there exists a constant C = C(M, E) such that 

1Eh(t) vh _ Ctd/48lVh II~ i forj = 0,1, Vh E Sh. 

Proof. Setting wh(t) = Eh(t)v, we have 

1l Uh 1l WJ = lThUh,t 1l WJ(Qh) < 11Tuh t 11 WJ (Q) + 11 (Th - T)Uht 11 W. (Qh) 

Here, by Sobolev's inequality and elliptic regularity, 

(5.5) II TUht II wj < CI TUht IIHd/2+J+e j C| tCIht iiHd/2+j-2+e. 

By our assumption (5.1) we have for any e > 0 

IIPIv - VIIw(a) < M(log -) hEl Vii w +e < CII VII W+e. 

Hence, since Th- T = (I - P1)T, we obtain, using (5.5), 

||(Th- T)uhst1 W(Oh) < CIITUhti WJ+e < C1 Uht IiHd/2+j-2+2e 

Using (5.3), we have, except for d = 1, j = 0, 

II Uhdt IIH/2+j-2+2, =11 AhEh(t) Vh |lHd/2+j-2+2e 

< C||(Ah/) Eh(t)( Ah) /2VhI 

sup I4 + EeI-t (-Ah) '/2vh | < Ct-d/4-eiiVh ||j 

x>o 

For the remaining case d = 1, j = 0 we have easily 

IiUh |IL < CiiuhilH1/2+2, < Cll(-Ah)l/4 Eh(t)vh < Ct /4E||Vh||. 

This completes the proof of the lemma. 
Note that the estimate of Lemma 5.2 is in terms of vh in L2 based spaces and 

hence not a stability estimate for Eh(t) in L. such as in Schatz, Thomee and 
Wahlbin [19] or Nitsche and Wheeler [16]. 
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We are now ready for the proof of the theorem. Letting p = Plv - v, we have, 
with E > 0 such that a + a + j + E < r, if 8 > 0 and a + a + j < r, 

11P W ) IW.J(Qg) C log - ) af~|u(t) 11 w-+c+c+j 

Ch a +?|allU 1 |~+ a+ d12 +j+ 2, < Chat+ at- /2 - d14-j/2 - 

In the case a + a + j - r and 8 > 0 the estimate contains the factor (log 1/h) ). 
It remains to estimate 0 = Uh - PIu. Using (4.2) and (5.4), we find easily 

t- Aho = Po(we - pt)q 

and hence, with 8 > 0, 

(tA80)t - Ah(tAO) = t Po(co e - pt.) + fit-lo 

and, by Duhamel's principle, 

tin = f Eh(t - s)[s% oe- pt) + /3t1-O] ds. 

Thus by Lemma 5.2, noting also that 0 = e - pq 

tI IIIL cf C| (t _ S) d/4e[S3IIptII + s5'(11e 1l + 11p )] ds. 

Using that lip(t) < Chat +?t -u/2 and the corresponding estimate for pt, and also 
Theorem 3.1, the above yields (for /3 large enough so that the integrand is integrable) 

tIOIIL < Ch?a+f (t - S) d/4 Ed 721ds 4 

from which our theorem follows if j = 0. 
For j = 1 we use again Lemma 5.2 to obtain 

(5.6) tIII| | cft |(t - swe/ [sl(IIceIIH1 + IIPtIIH1) 
(5.6)? 

+5 le llffl + 11 p ||Hf)] ds. 

Here, 

II we IIHl < C(I| e iIHl + || e IIL || A IIH'1), 

and since 

vco = f" (yUh + ?( -y))(yvuh + (1 -y)Vu) dy, 

we have by obvious energy estimates, 

jj (t) IIH1 < C(ll Uh(t) lH1 + CjjU(t) IIH1) < Ct -1/2 

so that, by Theorem 4.1 and our result for j = 0, 

II we ||H1 <- C(ha?+t-/2-1/2 + ha-+?t-/2-d/4-1/2-e) 

'< c+?-a/2-d/4-1/2-,- 

This result is now used in (5.6), and the proof is concluded as for the case j = 0, 
using once more Theorem 4.1 to estimate Ie I HI* 
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6. A Scalar Counterexample in Spline Spaces. Let u and uh be the solutions of 
(2.1) and (3.1), respectively, and assume that 

1U1L.(!, L.) < B and that Sh is such 
that (3.2) holds. Then by Theorem 1.1 (or the case a = 0 of Theorem 3.1) we have 
for any a < 2, 

(6.1) ||uh(t) - u(t) < C(B, M, to, a)h' for 0 < to < t < t. 

In this section we shall show the sharpness of this result in the sense that (6.1) 
cannot hold for any a > 2. In fact, as is shown below, the restriction a < 2 is valid 
even if the L2-norm on the left is replaced by a weaker (negative) norm. Our 
example here is similar to the system in the introduction, using trigonometric 
polynomials as approximating functions, but we feel that it is of interest to exhibit 
an example with a scalar equation and a family of standard finite element spaces. 

Thus, consider the problem 

Ut = UXX + U2, X E [0,7], t > 0, 

(6.2) u(0, t) = U(7, t) = 0, 

u(fO)= v, 

and let Sh = {X; X E Ck[0,TTI] XIj E Firi-) where h = 7y'n, n integer, 19 = 

(jjh, (j + 1)h), 0 < k < r - 1. Our interest here is in the case r > 2. 
We shall construct solutions u = u(h; x, t) of (6.2) which contradict (6.1) with 

a > 2. For this purpose, let 

r+1 

i'(y)= E 4J sin(jy) 
j=1 

be a not identically vanishing function, where the {J are chosen so that . is 
orthogonal to r- 1 on [0, IT], or 

IT 

f4(y)y'dy = O. I = O,...,r -1. 

This is possible since we have more unknowns than equations. Let 4j denote the 
first nonvanishing coefficient and normalize so that 4j = 1. Now choose initial data 
for (6.2) as 

v(x) = v(h,x) = p(nx), nh = r. 

Note that, independently of n, 

r+1 

(6.3) lv 100 < E j K. 
j=J 

It follows, by comparison with the initial value problems zt = z2, t > 0, z(0) = +K9 

that there is a t* > 0 and B such that Iju(t)jjoI < B for t E I, uniformly in n. 
Hence the conditions of Theorem 2.2 are satisfied. 

We remark that since there is a uniform bound for u, we may regard u2 is altered 
to a function f(u) with f(u) = u2 for lu < B and with f and f ' bounded on R, 
thus satisfying the assumptions of Theorem 3.1 (and Theorem 1.1). 

By construction, the L2-projection of v into Sh is zero, so that the semidiscrete 
solution vanishes and the error is identical with the exact solution of (6.2). 
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Letting cj = cj (g) = jo g(x) sin(jx) dx be the jth Fourier sine coefficient, we 
define the Hilbert scale 

| = (fEj2scj2, s E R. 

We shall prove that, given to with 0 < to < t*, there exist positive constants co and 
h 0 such that with v as above and s arbitrary, 

(6.4) IIu(t) Ils >? coh2 for to < t < t*, h < h0. 

This shows, in particular, that (6.1) cannot hold for any a > 2. 
Let c = c(u; t) = fJou(x, t) sinxdx denote the first Fourier sine coefficient of u. 

To prove (6.4), it is clearly enough to show that 

(6.5) c(u; t) >, con- to0 < t < t* n _>- n . 

The remainder of this section is devoted to this. 
We introduce the auxiliary functions w and ii as the solutions of 

w,= wxx in[0, 7 ] xI, 

w(x,t) =0 forx = 0,7 , t EI, 

w(.,O) =v 

and, with w+ = max(O, w), 

at = r4X + (W+)2 in [0, 7 X I, 

ii(x,t)=O forx=0,7TteI, 
u0(,O) =v. 

Since u2> 0, we have by comparison that u(x, t) >? w(x, t) and hence also u(x, t)2 
> w+(x, t)2, so that again by comparison u(x, t) >? ii(x, t). Hence, letting c = 
c( i, t) be the first Fourier sine coefficient of ii, we have c > c, so that it suffices 
now to show that c > c n-2. By construction, c(O) = jof (nx) sinxdx = 0 for 
n > 1, and hence c satisfies the initial value problem 

c' + c = p(t) f w+(x, t)2sinxdx, t > 0, 

e (O) = O. 

We shall show that there are constants c1 and k1 such that 

(6.6) 9p(t) > ce- 2n2J2t for n2t > k 

From this it will follow,, since q >? 0, that 

c(t) - f| e-(t-s)rp(s) ds > ce-tft e-(2n2J2 -)s dS 

= c2 e-2k J2e-t(l + o(1)) for n large, 

which concludes the proof. 
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It remains to show (6.6). For this we note that 
r+1 

w(x, t) = e-J2n2' sin(nJx) + E j e-j'n' 

j=J+l 

Denoting the first term on the right by w, it is obvious that 

j w( t)2sin x dx > C2e 

Since iv' < w + Iw - wI we have that iVw+< 2w2+ 21w - fV2 and hence, cf. (6.3), 

I2 > 
I 
14w2 - W2> 

2 
14 - (K 1)2e 2(J+ 1)2n2 t 

so that 

( (t) = f w+(x, t)2sinxdx C 
C22 -2J2n2t 2(K - )2e-2(J+ 1)2n2t 

= e -2J2 n2t - 2(K-1)2e (4J+2)n2t] ? for n2t 2 k. 

This proves (6.6) and completes the proof of (6.5), thus establishing a contradiction 
to (6.1) for a > 2. 

Appendix. In this appendix we present a proof of Theorem 2.2. The proof is an 
expanded version of an argument in Larsson [12], where the case /3 - a < 4 of (2.2) 
was treated. The main step of the proof consists in estimating certain time deriva- 
tives of the solution u in the H0-norms for 0 < a < 2. This is done in the following 
lemma. In the sequel we shall not explicitly indicate the dependence on B and t * of 
various constants such as C in (2.9). 

LEMMA A.1. (a) Let k >? 0 be an integer and suppose that 2k < a < 2(k + 1). Then 
V E&;;rimplies that u~') E C(I, H2) for 0 < j < k and u(k) E C(I, Ha2k) with 
u(')(0) = vj for 0 < j < k. 

(b) Let a >0 and assume that v E F. with Fa(v) < K. Let k be the integer part of 
a/2, so that 2k < a < 2(k + 1), and suppose that /3 satisfies 0 < /3 - a < 5 and 
2(k + i) < /3 < 2(k + i + 1) with i = 0,1,2,3. Then there is a constant C = C(K) 
such that 

(A.1) I I h,)(t |B- 2(k+ < Ct-( a)2 t EI 

Our argument will be based on Eqs. (2.6) and (2.7), and in order to handle the 
term Dtmf(u), we shall need estimates of the expressions on the right-hand side of 
(2.8) in various norms. We collect these estimates in Lemma A.2 below. One 
difficulty that arises in this context is that the spaces Hf generally involve boundary 
conditions. Since we do not want to assume that f(u) satisfies any boundary 
conditions, f (u) will, in general, belong to ra only for 0 < a < 1/2. 

LEMMA A.2. Letj > 1 and k >? 2 be integers and let 3/2 < X < 2. For each K > 0 
there is C = C(K) such that: 

(a) Ilu(t)IIL < K implies 

(A.2) || f ( u) II < C(I + || uI ) for 0 < a < 1/2, 
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(A.3) 1l f (J) ( U) U (/0 ... 
U (1j) 11 ka 

< C(I + || U |I mt) || U('1) I fAx I I U( J) I I for 0 < a < 1/2, 

(A.4) I1f(U) IIHk < C(I + 11 
U Hk) 

and, for 0 < a < k, 

(A.5) if(J)( U)U(1)-.. U(')) -Ha 

(A.5) ~ ~~~< C(1 + ||U |Hk ) ||U( 1) |H k . .. || U( J-1) ||Hk|| U( ,) |IHa. 

(b) Ilu(t)11ft2 < K implies 

(A.6) f (J)(u)u('1) ... U(IJ) 

< Culu(")lh . .. ||u(IJ-1)m|hx||u('J)Ih | for 0 < a < 1/2. 

Proof. For 0 < a < 1/2 we have Ha = Ho with equivalent norms. Hence, 

llull~a 2 [ul +| X _ ux-(Y) 12/1x X d+2,ud d1 

for 0 < a < 1/2, since the latter expression is equivalent to the Ha-norm. Now 
(A.2) follows by a simple computation. In the same way we find 

||UV |fYp < C||UIICYIIj V IIH 

for 0 < a < y < 1/2, and (A.6) follows. Together with Sobolev's inequality 

||UIICY < C||U||HqX -Y < X - d/2, 

and (A.2), this also shows (A.3). A proof of (A.4) can be found in Moser [13, p. 273]. 
For the proof of (A.5) we recall that, since k >? 2 > d/2, the Hk-norm is multiplica- 
tive, 

|| UV ||Hk < C|| u |UH k| v Hkg 

and that 

11 UV 1 - CI U IIHk II V 1. 

Hence, 

|| UV ||H- < C|| U ||Hk| V IIH-, 0 < a < k, 

by interpolation of the linear operator v -> uv mapping Hk into Hk and L2 into L2. 

This proves (A.5) and the proof is complete. 
We shall frequently use the following well-known generalization of Gronwall's 

lemma, cf. Amann [1]. 

LEMMA A.3. Let t* > 0, O < a, /3 < 1 and A, B >? 0. Then there is a positive 
constant C = C(t *, B, a, /) such that 

9p(t) < Ata + Bf| (t - s)<'%(s) ds, 0 < t < t 

implies 
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We are now prepared for the proof of Lemma A.1. 
Proof of Lemma A.1. During the course of this proof we shall use the notation 

lulla = IIUIIq. We begin by proving part (a) by induction on k and, at the same 
time, the particular case i = 0 of the estimate (A.1). Then, for fixed a, we shall show 
that (A.1) holds also for i = 1, 2 and 3. 

Thus, let k = 0, so that 0 < a < /8 < 2, and assume that v E 3a. By (2.4) and 
(2.3) wehave forO < a < # < 2 

lu (t) |1 < 7IE (t)v II f( + | E(t - s)f(uu(s)) Iids 

< C-(l-a)/2l " l!+ct ( t- _) -,0211 t( u(S)) Il d 

< Ct - (It-a)/2 (1 + || V Ila. - 

If,/ = 2, we take 0 < 8 < 1/2 and use (A.2) to get 

IIU(t) 112 < Ct-(2-a)/2llVlla + Cft (t - s)-(2 If(u(s)) i ds 

; 
Ct-(2-a)2liVll0 

+ cft (t -5)(2-1)/2(1 +llu(s)ii1)ds 

Ct-(2-a)/2(1 + l1lVla) + Cf (t - s) /(2 )/2S2dslIvii 

Ct-(-/(I +I|| V Ila), 

where we have also used the result just obtained for /3 < 2. Altogether, we may 
conclude that for 0 < a < 13 < 2 we have 

(A.7) | u (t) li < C(- a)/ (1 + Via) - a)/2 

if Fa(v) < K. This is the desired estimate (A.1) for i = k = 0. 
To show that u E C(I, fta), we take 0 < 8 < 1/2 such that 0 < a - 8 < 2 and 

obtain similarly 

1 u(t) - VIIa < ii(E(t) - I)vlla + Cft (t - s)(a-)/2iif( s 

< I|(E(t) - I)(-A) a2V + Cft (t _ S)-(a-8)12(1 + S-8/2) ds. 

Hence u(t) > v in Ha as t -O 0, if v E 3?. We have thus proved part (a) for k = 0. 
For the induction step we let m > 1 and assume that (a) has been proved for 

o < k < mr-1. Let 2m < a < / < 2(m + 1) and suppose that v et?1?. By our 
induction hypothesis we have u(j) E C(I, H2) for 0 < j < m - 1, so that in view of 
(A.6), and since E1i = m and 1i > 1, 

m 
DDtmtf(u) 1IL < C E L 11 fi)(u) u(/1) ... .(I,, 118 

j=i I 

< C(1 + ?u(m) a), < 8 < 1/2. 

Since 
m-1 

-' ) = AU(ml1) + E YcPfA')(u)u"l ... * 
j== I 
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it also follows that u(m)(t) vm in L2 as t -- 0, because u~')(t) V- in H2, and 
hence also in Lo, for 0 m j 1 rn-i. Therefore, we may taker = 0 in (2.6), 

U(m)(t) - E(t)vm + | E(t - s)Dsmf(u(s)) ds. 

With p = a - 2 m the same argument as in the case k = 0 now shows that 
U(m) E C(I, HP) and that 

(A.8) U(m)(t) ci 1 CV(UP)/2(1 + Vrnlp) Ct CV-(aP)-p/2 0 < p < < $ 2. 

This contains the desired case of (A.1) for a = /3- 2m and the induction step is 
complete. 

Having thus proved (A.1) for i = 0 and arbitrary a, we shall now fix a, and hence 
also k, and prove (A.1) for i = 1, 2 and 3. The case 0 < a < 2, i.e., k = 0, is slightly 
particular and we shall treat it separately. 

Consider thus the case i = 1, k = 0. We shall show 

(A.9) ||ut(t) || < C(t - T) (U-P)!2 llu(T) || 0 < p < a 2. 

Assume that this has been done. Observing that 

llutj1 = 11 Au + f(u) 11 < C(I + 11U 12) 
and using also (A.7), we have in particular, with p = 0, 

(Ao) ||ut(t) IL, < C(t/2) u/2 |ut(t/2) || 

< Ct-U!/2(1 + II u( t/2) 112) < Ct- 2, < < < 2, 

which contains the desired case of (A.1) for a = / - 2. 
For the proof of (A.9) we consider first 0 < p < a < 2. Using the trivial estimate 

11fl(u) ut 1 Cl utl l Cl ut L9 

we obtain from (2.7) 

||uJ(t) llo < C(t - T) p)/2 |Ut('T) IIP + CfI (t - s) s/211Ut(s) |0ds, 

and an application of Gronwall's lemma shows (A.9) for 0 < p < a < 2. For the 
remaining case a = 2 we take 0 < 8 < 1/2 and 3/2 < X < 2 and note that by (A.3), 
(A.7) and the case of (A.9) just proved, 

11 2 )11 C(t - )-(2 -p)/2 (11U() 

?ct (t _) -(2-o)/2(_ -(8+max{0-p))/2 d- U Ut(r) 

< C(t - )-(2-p)/2 u (T) 11, 

which completes the proof of (A.9). 
For thepase i = 2, k = O we set a = /3 - 4. We must prove that 

(A.11) IU Utt (tI Ilo < Ct - (I +a -)/2 

for 0 < a < 2, max{0, a - 1) < a < 2 (the lower bound on a is due to the restric- 
tion 3 - a <' 5). As in the previous case, we consider first 0 < a < 2. For this we 
note that 

Utt= Aut + f (u)ut 1 < CllUtj12 
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and that for 3/2 < X < 2 

11 D2f(u(s)) 11 11f'(u)uttll + jf,"(u)ujtj 

C|| Utt 11 + CII Ut IIAII Ut 11 

< C|| Ut(S) 11 + C(S - T) -2lU(T) 11 
Now the same Gronwall argument as above shows 

(A.12) lu tt(t) 11, < C(t - T) o/2(11 Ut(T) 112 +llUt(T) 1), 0 <, a < 2, 

and, in view of (A.9), the desired case of (A.11) follows. 
For a = 2 we choose 0 < 8 < 1/2 and 3/2 < X < 2 and (A.3) yields 

llDsf(u(s )) ll C 
s C(I + 11 U Ut l)(11UII + 11 Ut 11 ) 

< C(S - T) (X/2 Ut(jT) 112 + 11 Ut(T) IIAII U,(T) 11), 
where we have also used (A.12) and (A.9) and the fact that a > I implies Ilu(s)II < C 
by (A.7). Thus an argument similar to the second part of the proof of (A.9) now 
shows 

Ilutt(t) 112 -< C(t - T) -'IUt(T) 1) 

+ C(t- T) || U t( ) IIXII Ut(T) II. 

Taking, e.g., X = 3/2 + 8/2 and using (A.9), this proves the remaining case of 

(A.l1), which completes the proof of (A.1) for i = 2, k = 0. 
For i = 3, k = 0 we let a = B - 6. We need only consider 0 < a < 1 and 

1 < a < 2, in view of the restriction f3 - a < 5. Again take 3/2 < X < 2. Then, by 

(A.9) and (A.12), 

jjDsf(u(s)) 11 = lf'(u)uttt + 3f "(u)uttUt + f. (u)u1t 

< c(I{ || uttt || + ll Utt lAl Ut 1l + 1l Ut 1 llUt2l} 

< CIIUt~t(S) 11 + C(S - T) /2{IlUt(T)11211Ut(T)I11+lUt(T)IIxIlUt(T)I |2 

and our usual Gronwall argument leads to 

IIUttt(t) 1Ic < C(t - T) x11/2 ()Ut ( T) 11211 Ut ( T) 11 + IIUt(T) IIII Ut(T) 11}, 

which shows 

|utt (t) ||<C(t 
- 

T)(6a)/ 

since a > 1. This completes the proof of (A.1) for 0 < a < 2. 
Now let 2k < a < 2(k + 1) for some k > 1. We consider first i = 1. We shall 

show 

(A.13) )U(k+l)(t) || ( C(t - ) I/2(1 + ||U(k)(r) ll2) 0 < a < 2. 

With p = a - 2k this shows, in view of (A.8), 

|U(k+ l)(t) II ( Ct-(a+2-p)/2 0 < a < 2, 

which contains the desired case of (A.1) for a = /B - 2(k + 1). 
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For the proof of (A.13) we apply (A.6) to get 
k+1 

Dktlf(U) 118 < C U IIU~'l)112 *** U (j 1211 U(j) 118 
j=1 I 

for 0 < 8 < 1/2. Since jju(j)(t)112 < C for j < k and IIu(k)(t)l I < C, most of the 
factors on the right-hand side are bounded. In fact, taking the restriction EX 1i = k + 1 
into account, we find that for k > 2 

IDtk +f(U) 118 < C{1 + IU(k+1)l a + 11u(k)Ila} 
and for k = 1 

|| Dtt(U) 18 <Ct || (2) 1186 + 11 U(') 11211 U(') II.8} 

Similarly, 
llU(k+?1) 1- AU(k) + Dtkf(U) jj C{1 + IlU(k)112}. 

Using these inequalities, we can prove (A.13) by the same procedure as in the proof 
of (A. 9). 

For i = 2 we argue similarly. For 0 < 8 < 1/2 we have 
k+2 

D tk+2Df(u) j1 < C I IU ( 11 2 ... 11u(j-1) 11211 U(j)' 1a 
j=1 l 

and since E; li = k + 2, this gives for k > 3 

IDtk?2f (U) 116 _< C{1 + I|U(k+2)118 + I|U(k+l) || + I|U(k) 11}, 

for k = 2 

hIDt4f(U) 118 < C{1 + jju(4)118 + IIu(3) 1 +?(I + I1u(2)112)IIu(2)118}, 
and for k = 1 

IDt~3f(U) jj C U C{I u(3)118 + I u()11211u(2)I18 + I1U(1)I 
2 

1u(l)Ia}. 

Similarly, 

11 U(k+21| C(I + || U(k 112), 

and in the same way as for utt we obtain the desired estimate for u(k?2). 

Finally, for i = 3 we have 
k?3 

Dft k?3j(u) ff C U II ''112 II U(1-1) 11211 U(1j) I. 
j=1 I 

Similarly to the above, we find that for k > 4 

||Dtk+3f(u) || < C{1 + I| U(k+3)I + IU(k+2) | + U(k+l)11} 

for k = 3 

|Dt6f(U) || Cf 1 + 11 U(6)| + 11 U(5)| + 11 U(4) 11 + 1 U(3) 112), 

for k = 2 

|Dt5 ( U) || 
I 

{ + 11 U(5) 11 + 11 U(4) 11 + 11 U(4)112 + 11 U(2) 11211 U(2) 11} 

and fork= 1 

||Dt4f(U) | C{1 + ||U(4) || + ||U(3j2 + I| U(2) 11211U(2) II + I| U() 1121 U(2)II2 + ||U(l)II1} 
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Using these inequalities and the previous estimates, we can prove the correct 
estimate for u (k ? 3). This completes the proof of Lemma A.1. 

Our next lemma will be the main step in converting the special case of Lemma A.1 
into the general case of Theorem 2.2. 

LEMMA A.4. Let a > 0 and let m > 1 be an integer. Suppose that 

(A.14) ||U(i)(t) ||H a-2, K, Ct-max(O,a a}/2 t GE I, 

for 0 < a < 2m and 0 < 2i < a. Then 

jDtif(U(t)) IIH.-2(,+1) < Ct -()/, t E I, 

for 2m < a < 2(m + 1), 0 < a - a < 5 and 0 < i < m - 1. 

Proof. The idea of the proof is to replace the expression a - 2(i + 1) by an 
integer k > max{2, a - 2(i + 1)}. Then we can apply (A.4) and (A.5). For i = 0 we 
take k = 2m and obtain, by (A.4) and (A.14), 

I|f(U) IIWH-2 < I|f(U) IIHk C( + UHk) Ctmax{Ok-a}/2 < Ct-(-a)2 

Similarly, for i = 1 and i = 2 we set 

k max{2,2(m - i) - 1), if 2m < a < 2m + 1, 

t2(m - i), if 2m + I < a < 2(m + 1), 

and (A.5) and (A.14) yield 

IlDtf(U) IH--4 = ||f '(U)UtI|Ha-4 < C(I + IIUIIHk)IIUtII H-4 

m Ctmax{O,k-a}/2-max{O,a-4-a}/2 - (a-a)/2 

and 

Dttf(U) IIH.-6 < 1f '(u)utt JH--6 + 11f (U) |2Ha-6 

< C(I + I| U IIHk)(II Utt IIH.-6 + I| Ut IIHkII U II|Ha-6) 
< Ct-max{Ok-a}/2( t-max{Oa-6-a}/2 + t-max{Ok-a}/2-max{Oa-6-a}/2) 

Ct- (a -a)/2 

Finally, for i > 3 we may simply take k = 2(m - i), 

||Dtf (u) II..a- 20 +1) 

(A.15) C( (A 
- 5 ) 

C (i1 + || U II|H2F - ) ~ E |U (' IIH | 2( m l) * |U (/") IIHf2(m1) . 
n=1 I 

Here, all the factors are of the type I1u(j) LIH2(m - with 0 < j < i and, since 
2(m +j - i) < 2m, (A.14) gives 

|| U IIH2( i) = || U() I IH2(tn+J-i)-2J < Ct-max{O,2(m+j-i)-a}/2 

For j < i - 3 we have here 2(m +j - i) - a < 2m - 6 - a < a - 6 - a < -1, 
so that all factors in (A.15) involving time derivatives of order less than or equal to 
i- 3 are bounded. Taking the restrictions Eln1j = i and 1j > I into account, we 
verify that the remaining negative powers of t are no worse than t-('a-)/2, and the 
proof is complete. 
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At last we are ready to complete the proof of Theorem 2.2. 
Proof of Theorem 2.2. We first note that the theorem holds under the additional 

assumption that 0 < 1B - 2]j < 2. Since Ha C Ha, this follows from (A.1). In order 
to prove the general case from this particular case, we shall use the inequality 

{ ~~~j+m-1 

(A.16) Iu(')IIHp-2j < C{I1u(jM)IIHj-2(j+-) + E jjD/f(U) |H-2(i+l) 
i =j 

valid for 0 < 2]j < 1 and where m is to be chosen such that 0 < 1B-2(j + m) < 2. 
We obtain (A.16) easily by repeated use of (2.5) and the elliptic regularity estimate 

I|I|II _< C||JAU |I-2, u E H0f n Ho, a > 2. 

We first claim that the theorem holds for 2k < a < 1P < 2(k + 1), where k can be 
any nonnegative integer. The proof will proceed by induction on k. 

If k = 0 we have 0 < a < 1B < 2 and our claim follows from (A.1). For the 
induction step we let k > 1 and assume that the claim has been proved for 
2(k - 1) < a < f3 < 2k. Then let 2k < a < f3 < 2(k + 1) and 2]j < P. If j = k or 
k + 1, then P -2j < 2 and (A.1) applies. Otherwise j < k - 1 and we take 
m = k - j in (A.16), i.e., 

|IU(')IIHp-2j _< C(I|U (k)IIHI 2k + E jIDf(u) ||H 2(i+1) 

where 0 < 8 - 2k < 2, so that (A.1) can be applied to the first term, giving the 
correct negative power of t. For the remaining terms we note that, by our induction 
hypothesis, 

||u()(t) IIH--2i < ||u(i)(t) IIH2(k-i) < C 

for a < 2k, 2i < a. Hence, by Lemma A.4 with m = k, we have 

1 Dif (U(t)) ||Ha,-2(i+1) < Ct -(a -)/2I 

for a < ,B < 2(k + 1), 0 < i < k - 1, which completes the induction step. 
Assuming next that 2k < ao < 2(k + 1) for some k > 0, we thus know that the 

claim holds for a < ,B < 2(k + 1) and we proceed to consider the general case 
a < ,B < a + 5. Subject to the latter condition, it is clear that ,B can be no larger 
than 2k + 7. In a first step we consider 2(k + 1) < 1< < 2(k + 2), 2j < ,B and argue 
analogously to the above. Thus, if j < k, we take m = k + 1 - j in (A.16), 

/ ~ ~ ~~~~k 
1 |U(#)||H-2j < C{ I|U(k+l) IIHP-2(k+l) + F jj Dtf(u) ||H-2(i+ ) 

i=j 

where the first term is taken care of by (A.1). For the remaining terms we recall that 
we have already proved 

||U (i) ( t)||H- - 2i <_ Ct-max{0,a-a }/2 

for 0 < a < 2(k + 1), 2i < a, and by application of Lemma A.4 with m = k + 1 we 
obtain the desired result for 2(k + 1) < P3 < 2(k + 2). Repeating this argument 
twice more, we reach 2(k + 2) < P3 < 2(k + 3) and 2(k + 3) < P3 < 2k + 7, and 
Theorem 2.2 is proved. 
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